「粉体物性の特異性」を原因に産業界の現場・生産プロセスで発生するトラブルに対して、先達は多くの対応策を試行錯誤し、それぞれ解決してきた。ここでは粉体に起因するトラブルとその対策について技術士の吉原伊知郎氏(吉原伊知郎技術士事務所)が解説する。
産業上のトラブルに対し粉体エンジニア達はどのように対応してきたか
粉体トラブルは多くの場合、異なる原因の積み重ねで発生し複雑な様相をみせるものですが、それをシンプルな要素に分けて一つひとつ対応することで、結果的にトラブルをなくすことが可能であることを、先人たちは示してくれています。
スケールアップと装置選定の誤りを除く、いわゆる「粉であるがためのトラブル」は、以下の10種類に分類されます(日本粉体工業技術協会のアンケート結果から筆者が現役時代に発案し、粉体エンジニア達が実験しながら、いつでも思い出すことができるようにしたもの)。
- 詰まる、くっつく、摩耗する
- 漏れる、流れる、飛んで行く
- 蓄熱、発火、粉塵爆発
- それに静電気現象を含む偏析
始めの6つは「閉塞」、「付着」、「摩耗」。「粉漏れ」、「フラッシング」、「飛散」と言い換えられ、ここではそれぞれの実際的なトラブルをすべて列挙することはできませんが、各々(おのおの)に対する対策の一部実例を解説していきます。
一般的なトラブル対策
事前・事後対応とその他対応
トラブルに対応するには、すべての可能性をあらかじめ対処しておくやり方(事前対応)と、起こってしまってから何とか対応するやり方(事後対応)があります。前者は往々にしてコストがかかり、後者は客先側としては時間かかると不満を感じ、機器担当者としては精神的負担が大きくなります。
しかしながらそれら以外に粉体機器プロセスの現場では、可能性はあるが実験で問題がなかった事項について「現場で何とかできる仕込みをあらかじめ準備しておくが、金額のかかる部分をすべて最後まで用意しない」という、山登り用語でいえば 「エスケープ・ルート的」なトラブル対策が使われます。
昨今の社会では、どんなに技術が優れ多くの経験を持っていようと、「提示金額が高い」という理由からプロセス提案が採用されない事例が多々あります。採用の決定権が技術を理解できるメンバーであれば大きな問題ではありませんが、そうではない決定の仕組みを持つ組織も存在します。
ところが、粉体に関しては「同じ化学式」、「同じ湿分値」、「同じ粒度分布」という数字で表されても「流動係数」、「物質移動係数」、「総括熱移動容量係数」が異なる粉体はいくらでもあります。それは粉体の表面構造や表面の物理化学的特性、粒子内部の多孔性などの形態などで千差万別の物性を呈するからです。
パフォーマンス保証をした粉体機器メーカーが、スケールアップした際に行った実験材料を試運転終了後まで保管しておくのはそのためです。秘密保持のため原料粉体構成成分の一部を明らかにしない引き合いも多々ありますが、その際も実験した原料は試運転終了後まで保管しておかなければなりません。筆者の経験では、その実験原料を密閉用に入れ、第三者のもとで法的に誰も手を加えない状態で保管したことがあります。
また、粉体機器ユーザーが原料を仕入れる産地を変えただけで、流動係数が変わってしまった例もあります。この場合は粉体表面の形態が異なっていて、球状係数や表面にエッジの存在が写真で判明しました。
多くのトラブルを解決してきた経験を持つ粉体エンジニアは、同じ名称とされる粉体でもその物性が変化することを頭に入れ、前述したトラブル10種の対応を組み入れたプロセスを構築するのです。
エスケープ・ルート的トラブル対策
ここでは一部の例のみ示します。
閉塞トラブル
エアーノッカーやバイブレーター、エアレーションという機器を取り付けられるように台座やノズルを取り付け、ノズルには入れ子式キャップで閉じておきます。
万が一問題が発生した場合は、ノッカーやバイブレを取り付ける、あるいはエアレーションの設備を追加します。
摩耗トラブル
摩耗が発生する部分は、装置を分解できるようにしておき、構成材料を検討しながら、交換することができるようにしておきます。必ずしも高級材料を使うことではなく、低価格の一般材料を頻繁に交換した方が得策の場合もあるので注意が必要です。
粉漏れ対策
加熱を行うシャフトは熱膨張などにより、偏芯運動を起こしますが、その場合の軸シールは、偏芯運動と直角方向の面でシールを行うことが求められます。メカニカルシールの原理です。そのためには新しいシールユニットが、後から嵌(は)め込めるスペースが必要で、当初は簡易軸シールでも、問題が起こった時に速やかに交換できるスペースを用意しておくことが必要で、多くのメカニカルシールは2つ割りで後から組み込むことが可能な構造です。
飛散トラブル
空気の流速をあらかじめ計算しておき、問題が発生した際に、速やかにバイパスの追加や空気通過部位の断面積を上げることができるスペースを用意しておくなど、流速を下げる工夫ができるようにしておきます。
蓄熱・発火・粉塵爆発
エスケープ的対策は取りません。これに関しては、あらかじめ「放散孔」、「破裂版」、「燃焼制御噴射」、「不活性ガスによる閉回路」、「緊急閉止弁」、あるいは「ショックレジスタンス・コンストラクション構造」の計画を実行し、プロセスに反映させておかなければなりません。
写真1 閉塞トラブルを体験する“2次元貯留槽”実験
写真2 粉塵爆発における圧力上昇を開放する放散孔実演
大切なことは、実験時点での確認で発現可能性の低い、言い換えれば優先順位の低い要因に対しては「対策計画を仕込んでおくものの、最終形までは用意しない」が、優先順位の高い(影響が重大である)ものは「あらかじめ対策の最終形態まで実施しておく」という発想です。あとから部品を追加する際も「現場溶接/高所作業などは行わなくても、安全に分解/組立作業のみで対応できるようにしておく」という構想を立てておく事です。このように、対象である各プロセスの特長に応じ、重要度の順位はしっかりと吟味することが肝心です。
おわりに~将来、解明が期待される粉体の挙動
一般的に、感覚的なイメージでは理解し難い「粉体/粉体層の挙動」は、現在多くの研究者によって発展してきた「粉体シミュレーション技法」によって、将来さらに解明される事が期待されます。混相流体としてのレオロジー分野では「湿った砂の挙動」、「靴クリームの挙動」を、数学的に明らかにしてきています。私たちの身近な問題である「地盤の流動化現象」の発現理由も「混相流体の観点」から議論されている一方で、分子・原子の動きや天体の星たちの動きも、宇宙の初めに初速を与えられた粒子群、言い換えれば粉体たちの挙動ということができるのです。
執筆:技術士 吉原伊知郎(吉原伊知郎技術士事務所)