1. 国際単位系（SI）とその使い方

1-1. 適用範囲
この規定は、国際単位系（SI）及び国際単位系による単位の用い方並びに国際単位系による単位を用いる単位及び

1-2. 用途と定義
この規定の中にある単位名及びその定義は、次の通りとする。
（1）国際単位系（SI） 国際標準規定で採用されている一貫した単位系、基準単位、補助単位及びそれから組み立てられる組

（2）SI 単位 国際単位系（SI）の中の基本単位、補助単位及び導出単位の総称。
（3）基本単位 表に示すものを基本単位とする。
（4）補助単位 表に示すものを補助単位とする。

表 1 基本単位

<table>
<thead>
<tr>
<th>単位</th>
<th>単位の名前</th>
<th>単位記号</th>
<th>単位</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>長さ</td>
<td>メートル</td>
<td>m</td>
<td>m</td>
<td>1280年当時の晩空を指す大きさ。</td>
</tr>
<tr>
<td>質量</td>
<td>キログラム</td>
<td>kg</td>
<td>kg</td>
<td>1280年当時の晩空を指す大きさ。</td>
</tr>
<tr>
<td>時間</td>
<td>秒</td>
<td>s</td>
<td>s</td>
<td>1280年当時の晩空を指す大きさ。</td>
</tr>
<tr>
<td>電流</td>
<td>アンペア</td>
<td>A</td>
<td>A</td>
<td>1280年当時の晩空を指す大きさ。</td>
</tr>
<tr>
<td>熱力学温度</td>
<td>ケルビン</td>
<td>K</td>
<td>K</td>
<td>1280年当時の晩空を指す大きさ。</td>
</tr>
<tr>
<td>物質量</td>
<td>モル</td>
<td>mol</td>
<td>mol</td>
<td>1280年当時の晩空を指す大きさ。</td>
</tr>
<tr>
<td>光度</td>
<td>ケンデル</td>
<td>cd</td>
<td>cd</td>
<td>1280年当時の晩空を指す大きさ。</td>
</tr>
</tbody>
</table>

表 2 補助単位

<table>
<thead>
<tr>
<th>単位</th>
<th>単位の名前</th>
<th>単位記号</th>
<th>単位</th>
<th>定義</th>
</tr>
</thead>
<tbody>
<tr>
<td>平面角</td>
<td>ジアノン</td>
<td>rad</td>
<td>rad</td>
<td>1280年当時の晩空を指す大きさ。</td>
</tr>
<tr>
<td>立体角</td>
<td>スラスタラム</td>
<td>sr</td>
<td>sr</td>
<td>1280年当時の晩空を指す大きさ。</td>
</tr>
</tbody>
</table>

(5) 組単位 基本単位及び補助単位を用いて代名詞を用いて組成を表す単位の総称。

例：基本単位から出発して導出する組み合わせの例

表 3 国内の名称をもつ組単位の例

1-3. SI 単位の10の整数帯

（1）導出 単位の10の整数帯を構成するための倍数、接頭語の名称及び接頭語の記号は、表4による。

<table>
<thead>
<tr>
<th>対象</th>
<th>単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>立体角</td>
<td>ジアノン</td>
<td>rad</td>
<td>10^3 rad</td>
<td>10^6 rad</td>
<td>10^9 rad</td>
<td>10^12 rad</td>
<td>10^15 rad</td>
<td>10^18 rad</td>
<td>10^21 rad</td>
<td>10^24 rad</td>
<td>10^27 rad</td>
</tr>
</tbody>
</table>

注1: m/s = 1 m/s, 1 m/s = 1 m/s

2. SI 単位への換算方法

（有元国際単位系国以外によって換算される）
<table>
<thead>
<tr>
<th>材料コード</th>
<th>材料名</th>
<th>0.0575</th>
<th>0.0956</th>
<th>0.1908</th>
<th>0.7854</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7075</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2801</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
各種加工法による粗さの範囲

<table>
<thead>
<tr>
<th>被験金属の種類</th>
<th>JIS B 0021 (1984) より抜粋</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>粗さ記号</th>
<th>R_{m}</th>
<th>R_{a}</th>
<th>R_{p}</th>
<th>R_{q}</th>
<th>R_{z}</th>
<th>R_{c}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.025</td>
<td>0.05</td>
<td>0.1</td>
<td>0.2</td>
<td>0.4</td>
<td>0.8</td>
<td>1.6</td>
</tr>
</tbody>
</table>

幾何公差の図示方法

<table>
<thead>
<tr>
<th>極小公差</th>
<th>記号</th>
<th>公差の種類</th>
<th>公差計測方法</th>
</tr>
</thead>
<tbody>
<tr>
<td>面の公差</td>
<td>g7</td>
<td>面の平さ公差</td>
<td>平面度公差</td>
</tr>
</tbody>
</table>

幾何公差の種類とその記号

- JIS B 0021 (1984) より抜粋
1. 計算
1.1 ばねの設計式に用いる記号
ばねの設計式に用いる記号は、表1による。

1.2 ばねの設計に用いる基本式
1.2.1 压縮ばね及び引張りばねに圧縮力はばねの場合

$$d = \frac{F}{B}$$

$$k = \frac{B}{d^2}$$

$$P = \frac{F}{d}$$

$$P = \frac{B}{d^2}$$

1.2.2 引張力を取るばねの場合（たとえば、P>P）

$$d = \frac{F}{B}$$

$$k = \frac{B}{d^2}$$

$$P = \frac{F}{d}$$

$$P = \frac{B}{d^2}$$

1.3 ばねの設計に考慮べき事項
1.3.1 横荷重性験
ばねの設計に用いる横荷重性験の値は、表2に示す。

<table>
<thead>
<tr>
<th>記号</th>
<th>横荷重性験</th>
</tr>
</thead>
<tbody>
<tr>
<td>$$d$$</td>
<td>ばねの幅</td>
</tr>
<tr>
<td>$$B$$</td>
<td>ばねの長さ</td>
</tr>
<tr>
<td>$$F$$</td>
<td>横荷重</td>
</tr>
</tbody>
</table>

1.3.2 有効荷重
ばねの設計に用いる有効荷重は、次のように。

(1) 压縮ばねの場合

$$N_a = \frac{1}{3} (d + b)$$

(2) 引張りばねの場合

$$N_a = dB$$

1.3.3 有効荷重
ばねの設計に用いる有効荷重は、次のように。

$$N_a = dB$$

(1) 压縮ばねの場合

$$N_a = \frac{1}{3} (d + b)$$

(2) 引張りばねの場合

$$N_a = dB$$

1.3.4 压縮ばねの安全荷重
ばねの安全荷重は、次の式により算出する。

$$P = \frac{F}{d}$$

(1) 压縮ばねの場合

$$P = \frac{F}{d}$$

(2) 引張りばねの場合

$$P = \frac{F}{d}$$

1.3.5 引張りばねの安全荷重
ばねの安全荷重は、次の式により算出する。

$$P = \frac{F}{d}$$

(1) 压縮ばねの場合

$$P = \frac{F}{d}$$

(2) 引張りばねの場合

$$P = \frac{F}{d}$$

1.3.6 压縮ばねの許容荷重
ばねの許容荷重は、次の式により算出する。

$$P = \frac{F}{d}$$

(1) 压縮ばねの場合

$$P = \frac{F}{d}$$

(2) 引張りばねの場合

$$P = \frac{F}{d}$$

1.3.7 その他考慮すべき事項
ばねの設計設計に際し、次に示す事項について考慮しなければならない。

(1) ばねの材料

1.3.8 サーチーズ
サーチーズを用いたため、ばねの荷重荷重は、圧縮に作用する重力の場合、次のように算出する。

$$P = \frac{F}{d}$$

(1) 压縮ばねの場合

$$P = \frac{F}{d}$$

(2) 引張りばねの場合

$$P = \frac{F}{d}$$

1.3.9 ピンセット
ばねの設計に用いる有効荷重は、次のように。

$$N_a = dB$$

(1) 压縮ばねの場合

$$N_a = dB$$

(2) 引張りばねの場合

$$N_a = dB$$

1.3.10 その他考慮すべき事項
ばねの設計設計に際し、次に示す事項について考慮しなければならない。

(1) サーチーズ

$$P = \frac{F}{d}$$

(1) 压縮ばねの場合

$$P = \frac{F}{d}$$

(2) 引張りばねの場合

$$P = \frac{F}{d}$$
1. 裁り加工寸法の普通許容差 B 0405-1991

面取部分を裁る寸法に対する許容差

<table>
<thead>
<tr>
<th>部品</th>
<th>基準寸法の区分</th>
<th>許容差</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>精細</td>
<td>±0.05 ±0.05 ±0.1 ±0.15 ±0.2 ±0.3 ±0.35</td>
</tr>
<tr>
<td>m</td>
<td>中規</td>
<td>±0.1 ±0.1 ±0.2 ±0.3 ±0.5 ±0.8 ±1.2 ±2</td>
</tr>
<tr>
<td>c</td>
<td>極端</td>
<td>±0.3 ±0.3 ±0.5 ±0.8 ±1 ±1.2 ±1.6 ±2.4</td>
</tr>
<tr>
<td>v</td>
<td>機械</td>
<td>±0.6 ±0.6 ±1 ±1.5 ±2 ±2.5 ±3 ±3.8</td>
</tr>
</tbody>
</table>

(技術データ) 加工寸法の普通許容差 JIS B 0405, 0419 (1991)より抜粋

2. 面取り部分の寸法（かの丸み及びかの等径）に対する許容差

面取部分の寸法に対する許容差

<table>
<thead>
<tr>
<th>部品</th>
<th>基準寸法の区分</th>
<th>許容差</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>精細</td>
<td>±1 ±1 ±1.5 ±2 ±2.5 ±3 ±5</td>
</tr>
<tr>
<td>m</td>
<td>中規</td>
<td>±1 ±1 ±1.5 ±2 ±2.5 ±3 ±5</td>
</tr>
<tr>
<td>c</td>
<td>極端</td>
<td>±3 ±3 ±3.5 ±4 ±4.5 ±5 ±5.5</td>
</tr>
</tbody>
</table>

3. 角度寸法の許容差

<table>
<thead>
<tr>
<th>部品</th>
<th>基準寸法の区分</th>
<th>許容差</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>精細</td>
<td>±0.2 ±0.5 ±1</td>
</tr>
<tr>
<td>m</td>
<td>中規</td>
<td>±0.4 ±1 ±2</td>
</tr>
<tr>
<td>c</td>
<td>極端</td>
<td>±0.6 ±1.5 ±2.5</td>
</tr>
</tbody>
</table>

4. 汎用の通常公差 B 0419-1991

<table>
<thead>
<tr>
<th>公差</th>
<th>基準寸法の区分</th>
<th>許容差</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.2 0.3 0.4 0.5</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>0.4 0.6 0.8</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.6 1 1.5</td>
<td></td>
</tr>
</tbody>
</table>

5. 真直度及び平面度の公差

<table>
<thead>
<tr>
<th>部品</th>
<th>基準寸法の区分</th>
<th>許容差</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.02 0.05 0.1 0.2 0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>K</td>
<td>0.05 0.1 0.2 0.4 0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>L</td>
<td>0.1 0.2 0.4 0.6 1.2</td>
<td>1.6</td>
</tr>
</tbody>
</table>

6. ショット角度の公差

<table>
<thead>
<tr>
<th>部品</th>
<th>基準寸法の区分</th>
<th>許容差</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>0.6 0.8</td>
<td>1</td>
</tr>
<tr>
<td>K</td>
<td>0.6 0.8</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.6 1</td>
<td>1.5</td>
</tr>
<tr>
<td>基準の数値</td>
<td>軸方向の寸法を含む</td>
<td>アスペクト比</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>100</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>150</td>
<td>60</td>
<td>200</td>
</tr>
<tr>
<td>200</td>
<td>70</td>
<td>300</td>
</tr>
<tr>
<td>300</td>
<td>80</td>
<td>400</td>
</tr>
<tr>
<td>400</td>
<td>90</td>
<td>500</td>
</tr>
<tr>
<td>500</td>
<td>100</td>
<td>600</td>
</tr>
</tbody>
</table>

（技術データ） 常用するはめあいの寸法公差
JIS B 0040-1, 2 (1998) より抜粋編集

（技術データ） 常用するはめあいの寸法公差
JIS B 0040-1, 2 (1998) より抜粋編集
1. 表面粗さの種類
工業製品の表面粗さを表すパラメータとして、算術平均粗さ（Ra）、最大高さ（Ry）、十点平均粗さ（Rz）、凹凸の平均面間隔（Sm）、局部山隆の平均幅（S）及び面積長さ（Sp）の定義及び表示について規定しており、表面粗さは、対象物の表面からランダムに抜き取った各部分におけるそれぞれの算術平均値である。

代表的な表面粗さの求め方
算術平均粗さ Ra

【図1】各指示記号の記入位置

最大高さ Ry

参考 表面粗さ（Ra）と従来の表記の関係

表1 各指示記号に対する各指示記号の位置
面の肌に関する指示記号は、面の指示記号に対し、表面粗さの値、カットオフ値又は基準長、加工方法、曲面方向の記号、表面なめらかさを図に示す位置に配置して表示する。

参考 図1の位置に、ISO 1302では仕上げ面を記入することになっている。
鋼のロックウェルC硬さに対する近似的換算表

<table>
<thead>
<tr>
<th>(HRC)</th>
<th>ロックウェルC硬さ</th>
<th>(HRB)</th>
<th>ロックウェルB硬さ</th>
<th>(HR32)</th>
<th>ハードフェライト</th>
<th>（HRC）ロックウェルCに対する近似的換算表</th>
<th>10-Nの試験荷重</th>
<th>30-Nの試験荷重</th>
<th>45-Nの試験荷重</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>189</td>
<td></td>
<td>538</td>
<td>5.0</td>
<td>688</td>
<td>569</td>
<td>75.1</td>
<td>75.1</td>
<td>75.1</td>
</tr>
<tr>
<td>20</td>
<td>191</td>
<td></td>
<td>541</td>
<td>5.1</td>
<td>725</td>
<td>613</td>
<td>77.4</td>
<td>77.4</td>
<td>77.4</td>
</tr>
<tr>
<td>21</td>
<td>193</td>
<td></td>
<td>557</td>
<td>5.2</td>
<td>760</td>
<td>651</td>
<td>79.1</td>
<td>79.1</td>
<td>79.1</td>
</tr>
<tr>
<td>22</td>
<td>195</td>
<td></td>
<td>573</td>
<td>5.3</td>
<td>795</td>
<td>693</td>
<td>80.8</td>
<td>80.8</td>
<td>80.8</td>
</tr>
<tr>
<td>23</td>
<td>197</td>
<td></td>
<td>600</td>
<td>5.4</td>
<td>820</td>
<td>731</td>
<td>82.5</td>
<td>82.5</td>
<td>82.5</td>
</tr>
<tr>
<td>24</td>
<td>199</td>
<td></td>
<td>626</td>
<td>5.5</td>
<td>845</td>
<td>769</td>
<td>84.2</td>
<td>84.2</td>
<td>84.2</td>
</tr>
<tr>
<td>25</td>
<td>201</td>
<td></td>
<td>651</td>
<td>5.6</td>
<td>870</td>
<td>805</td>
<td>85.8</td>
<td>85.8</td>
<td>85.8</td>
</tr>
<tr>
<td>26</td>
<td>203</td>
<td></td>
<td>676</td>
<td>5.7</td>
<td>895</td>
<td>841</td>
<td>87.5</td>
<td>87.5</td>
<td>87.5</td>
</tr>
<tr>
<td>27</td>
<td>205</td>
<td></td>
<td>701</td>
<td>5.8</td>
<td>920</td>
<td>876</td>
<td>89.1</td>
<td>89.1</td>
<td>89.1</td>
</tr>
<tr>
<td>28</td>
<td>207</td>
<td></td>
<td>726</td>
<td>5.9</td>
<td>945</td>
<td>912</td>
<td>90.8</td>
<td>90.8</td>
<td>90.8</td>
</tr>
<tr>
<td>29</td>
<td>209</td>
<td></td>
<td>751</td>
<td>6.0</td>
<td>970</td>
<td>948</td>
<td>92.5</td>
<td>92.5</td>
<td>92.5</td>
</tr>
<tr>
<td>30</td>
<td>211</td>
<td></td>
<td>776</td>
<td>6.1</td>
<td>995</td>
<td>984</td>
<td>94.2</td>
<td>94.2</td>
<td>94.2</td>
</tr>
<tr>
<td>31</td>
<td>213</td>
<td></td>
<td>801</td>
<td>6.2</td>
<td>1020</td>
<td>1020</td>
<td>95.9</td>
<td>95.9</td>
<td>95.9</td>
</tr>
</tbody>
</table>

（技術データ） シーサル並目ねじ JIS B 0205 (2001) より抜粋

注: 齢の数は、ASTM E 140 責格における HRC、HRB、HR32 の間で換算した値である。

表中の 数字 および**表中の 数字** は、以下のようないすれものにそれぞれ表記されている。

1. HPA は 1 MPa/m の2
2. 表示価値（ ）内の数字は、表に示された範囲のものであることを示す。
1. 各部の寸法
2. 六角穴付ボルトのLとℓ及びℓs

<table>
<thead>
<tr>
<th>単位: mm</th>
<th>M2</th>
<th>M2.5</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
<th>M14</th>
<th>M16</th>
<th>M20</th>
<th>M24</th>
<th>M27</th>
<th>M30</th>
</tr>
</thead>
<tbody>
<tr>
<td>おねじの呼び径</td>
<td>0.4</td>
<td>0.46</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>1</td>
<td>1.25</td>
<td>1.5</td>
<td>1.75</td>
<td>2</td>
<td>2.5</td>
<td>2.5</td>
<td>3</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>d</td>
<td>1.6</td>
<td>1.7</td>
<td>1.8</td>
<td>2</td>
<td>2.2</td>
<td>2.4</td>
<td>2.6</td>
<td>2.8</td>
<td>3</td>
<td>3.2</td>
<td>3.4</td>
<td>3.6</td>
<td>4</td>
<td>4.2</td>
<td>4.4</td>
</tr>
<tr>
<td>dk</td>
<td>5.5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>ds</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>k</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>25</td>
<td>27</td>
<td>30</td>
</tr>
</tbody>
</table>

注: (1) M18以上の六角ボルトは、すべての強度区分及び径級区分のものに適用する。

(2) なお、呼びの呼びM20以上の六角形は、すべての強度区分及び径級区分のものに適用する。

参考: 六角穴付ボルトに対する呼び及びボルト穴の寸法

<table>
<thead>
<tr>
<th>単位: mm</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
<th>M14</th>
<th>M16</th>
<th>M20</th>
<th>M24</th>
<th>M27</th>
<th>M30</th>
</tr>
</thead>
<tbody>
<tr>
<td>おねじの呼び径</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>dk</td>
<td>5.5</td>
<td>7</td>
<td>8.5</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
<td>33</td>
<td>36</td>
</tr>
<tr>
<td>D'</td>
<td>6.5</td>
<td>8</td>
<td>9.5</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>20</td>
<td>23</td>
<td>26</td>
<td>29</td>
<td>32</td>
<td>35</td>
<td>38</td>
</tr>
<tr>
<td>k</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>24</td>
</tr>
</tbody>
</table>

参考: JIS B 1176(1999 - 2000) より抜粋
【技術データ】 ボルトの適正締付軸力/適正締付トルク

■ボルトで締結するときの締付軸力及び疲労限度
・ ボルトを締付ける際の適正締付軸力の算出は、トルク値では規格耐力の70%を
最大とする締付軸力内であること。
・ 締付軸力によるボルトの疲労限度に許容値を越えないこと。
・ ボルト及びナットの裏面に締付け物を接着させないこと。
・ 締付軸力によって締付け物を破壊させないこと。

■締付軸力と締付トルクの計算
締付軸力の関係（1式）で示されます。

\[
T = \frac{k \cdot \sigma_y \cdot L}{d^2}
\]

- \(T\)：トルク値
- \(k\)：パネルの弾性係数
- \(\sigma_y\)：ボルトの引張強度
- \(L\)：締付けウェブの長さ
- \(d\)：ボルトの呼び径

【例】

\[
T = \frac{100 \cdot 50 \cdot 100}{0.005^2} = 10^7 \text{Ncm}
\]

■締付軸力と締付トルクの計算

1. ボルトの適正締付軸力を求める場合

\[
A = \frac{P}{t} = \frac{1800}{20} = 90 \text{Nm}
\]

2. ボルトの適正締付トルクを求める場合

\[
T = \frac{90 \cdot 0.005^2}{0.005} = 45 \text{Ncm}
\]

■ボルトの強度

1. ボルトの適正締付軸力を求める場合

\[
A = \frac{P}{t} = \frac{1800}{20} = 90 \text{Nm}
\]

2. ボルトの適正締付トルクを求める場合

\[
T = \frac{90 \cdot 0.005^2}{0.005} = 45 \text{Ncm}
\]

■ボルトの適正締付軸力/適正締付トルク

【技術データ】 ボルト・スクリュープラグ・ノックピンの強度

■引張強度を基準とした、応力分布の安全率

【図】

■スクリュープラグの強度

スクリュープラグの引張強度を求める場合、以下の式を用います。

\[
As = \frac{A_m \cdot d}{t}
\]

■引きねじの強度

引きねじの強度は、以下の式を用います。

\[
As = \frac{A_m \cdot d}{t}
\]

■スクリュープラグの強度

スクリュープラグの引張強度を求める場合、以下の式を用います。

\[
As = \frac{A_m \cdot d}{t}
\]

■引きねじの強度

引きねじの強度は、以下の式を用います。

\[
As = \frac{A_m \cdot d}{t}
\]
六角穴止めねじ・平先

六角穴止めねじの形状・寸法 (JIS B 1177-1997)

<table>
<thead>
<tr>
<th>サイズ</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
<th>M16</th>
<th>M20</th>
<th>M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>ピッチ</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>1.0</td>
<td>1.25</td>
<td>1.5</td>
<td>1.75</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>最小</td>
<td>0.75</td>
</tr>
<tr>
<td>ねじ</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

六角穴止めねじの呼び寸法

<table>
<thead>
<tr>
<th>サイズ</th>
<th>M2</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
<th>M16</th>
<th>M20</th>
<th>M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>ピッチ</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.7</td>
<td>0.8</td>
<td>1.0</td>
<td>1.25</td>
<td>1.5</td>
<td>1.75</td>
<td>2.0</td>
<td>2.5</td>
</tr>
<tr>
<td>最小</td>
<td>0.75</td>
</tr>
<tr>
<td>ねじ</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

注：(1) サイズの表示方法を変更したため、上記の呼び寸法は一部変更しました。
(2) JIS B 0123による呼び寸法を示しています。

六角ボルト

六角ボルトの形状・寸法

<table>
<thead>
<tr>
<th>サイズ</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
<th>M16</th>
<th>M20</th>
<th>M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>ピッチ</td>
<td>0.75</td>
</tr>
<tr>
<td>最小</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

六角ボルトの呼び寸法

<table>
<thead>
<tr>
<th>サイズ</th>
<th>M3</th>
<th>M4</th>
<th>M5</th>
<th>M6</th>
<th>M8</th>
<th>M10</th>
<th>M12</th>
<th>M16</th>
<th>M20</th>
<th>M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>ピッチ</td>
<td>0.75</td>
</tr>
<tr>
<td>最小</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.5</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>
六角ナット

1. 六角ナット スタイルI（部品等級A）の形状、寸法

2. 六角ナット スタイルII（部品等級A）の形状、寸法

スプリングピンの形状・寸法

E形止め輪

3. 割り損の形状、寸法

（技術データ） 六角ナット 割りピン

JIS B 1181 (1995) より抜粋
JIS B 1351 (1987) より抜粋

（技術データ） スプリングピン

E形止め輪

JIS B 2808 (1995) より抜粋
JIS B 2805 (1978) より抜粋

備考 1. 以下の形状は、E形止め輪の形状についてのもの。

2. 以下の形状は、E形止め輪の形状についてのもの。

* すきまは、スプリングピンを適用する穴に挿入したとき、辺が接触しないような寸法でなければならない。

3. 割り損の形状、寸法

E形止め輪の形状・寸法

自由状態

使用状態

備考 形状は一例を示す

注) Ｄ最大は、ピンの端面における最大値とし、Ⅰ是最小、Ⅱ是最小、Ⅲ是最小の寸法とする。

参考の数値は、JIS B 1181 (日本工業規格) による。

E形止め輪の形状、寸法

自由状態

使用状態

備考 形状は一例を示す

注) Ｄ最大は、ピンの端面における最大値とし、Ⅰ是最小、Ⅱ是最小、Ⅲ是最小の寸法とする。

参考の数値は、JIS B 1181 (日本工業規格) による。
C形止め輪

1.C形止め輪（軸用）

![C形止め輪（軸用）](image)

技術データ C形止め輪 JIS B 2804 (2001) より抜粋

<table>
<thead>
<tr>
<th>呼び径</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>10</td>
<td>14</td>
<td>20</td>
<td>13</td>
<td>20</td>
<td>15</td>
<td>9.5</td>
<td>10.5</td>
</tr>
<tr>
<td>20</td>
<td>13</td>
<td>17</td>
<td>23</td>
<td>15</td>
<td>23</td>
<td>18</td>
<td>11</td>
<td>12.5</td>
</tr>
<tr>
<td>22</td>
<td>16</td>
<td>20</td>
<td>26</td>
<td>18</td>
<td>26</td>
<td>22</td>
<td>13</td>
<td>14.5</td>
</tr>
<tr>
<td>25</td>
<td>19</td>
<td>24</td>
<td>30</td>
<td>21</td>
<td>30</td>
<td>26</td>
<td>16</td>
<td>17.5</td>
</tr>
<tr>
<td>28</td>
<td>22</td>
<td>27</td>
<td>34</td>
<td>24</td>
<td>34</td>
<td>30</td>
<td>19</td>
<td>20.5</td>
</tr>
<tr>
<td>32</td>
<td>25</td>
<td>30</td>
<td>38</td>
<td>28</td>
<td>38</td>
<td>35</td>
<td>22</td>
<td>23.5</td>
</tr>
<tr>
<td>35</td>
<td>28</td>
<td>33</td>
<td>42</td>
<td>30</td>
<td>42</td>
<td>37</td>
<td>25</td>
<td>25.5</td>
</tr>
<tr>
<td>40</td>
<td>32</td>
<td>37</td>
<td>46</td>
<td>34</td>
<td>46</td>
<td>41</td>
<td>28</td>
<td>28.5</td>
</tr>
<tr>
<td>45</td>
<td>36</td>
<td>41</td>
<td>50</td>
<td>39</td>
<td>50</td>
<td>45</td>
<td>31</td>
<td>31.5</td>
</tr>
<tr>
<td>50</td>
<td>40</td>
<td>45</td>
<td>54</td>
<td>44</td>
<td>54</td>
<td>48</td>
<td>35</td>
<td>34.5</td>
</tr>
<tr>
<td>55</td>
<td>44</td>
<td>50</td>
<td>58</td>
<td>49</td>
<td>59</td>
<td>52</td>
<td>39</td>
<td>38.5</td>
</tr>
<tr>
<td>60</td>
<td>48</td>
<td>54</td>
<td>60</td>
<td>54</td>
<td>62</td>
<td>56</td>
<td>42</td>
<td>40.5</td>
</tr>
<tr>
<td>65</td>
<td>52</td>
<td>58</td>
<td>64</td>
<td>58</td>
<td>65</td>
<td>60</td>
<td>46</td>
<td>43.5</td>
</tr>
<tr>
<td>70</td>
<td>56</td>
<td>62</td>
<td>66</td>
<td>62</td>
<td>69</td>
<td>63</td>
<td>49</td>
<td>46.5</td>
</tr>
<tr>
<td>75</td>
<td>59</td>
<td>65</td>
<td>70</td>
<td>65</td>
<td>72</td>
<td>66</td>
<td>53</td>
<td>52.5</td>
</tr>
<tr>
<td>80</td>
<td>63</td>
<td>70</td>
<td>74</td>
<td>70</td>
<td>77</td>
<td>71</td>
<td>57</td>
<td>54.5</td>
</tr>
<tr>
<td>85</td>
<td>66</td>
<td>73</td>
<td>78</td>
<td>73</td>
<td>80</td>
<td>74</td>
<td>61</td>
<td>60.5</td>
</tr>
<tr>
<td>90</td>
<td>69</td>
<td>76</td>
<td>80</td>
<td>76</td>
<td>83</td>
<td>76</td>
<td>66</td>
<td>65.5</td>
</tr>
</tbody>
</table>

2.C形止め輪（穴用）

![C形止め輪（穴用）](image)

技術データ C形止め輪 JIS B 2804 (2001) より抜粋

<table>
<thead>
<tr>
<th>呼び径</th>
<th>d1</th>
<th>d2</th>
<th>d3</th>
<th>d4</th>
<th>d5</th>
<th>d6</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>10</td>
<td>12</td>
<td>18</td>
<td>11</td>
<td>17</td>
<td>15</td>
<td>7.5</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>13</td>
<td>20</td>
<td>18</td>
<td>10</td>
<td>10.5</td>
</tr>
<tr>
<td>22</td>
<td>15</td>
<td>19</td>
<td>24</td>
<td>15</td>
<td>24</td>
<td>22</td>
<td>12</td>
<td>12.5</td>
</tr>
<tr>
<td>25</td>
<td>18</td>
<td>23</td>
<td>30</td>
<td>20</td>
<td>31</td>
<td>28</td>
<td>14</td>
<td>14.5</td>
</tr>
<tr>
<td>28</td>
<td>22</td>
<td>28</td>
<td>38</td>
<td>25</td>
<td>38</td>
<td>35</td>
<td>16</td>
<td>16.5</td>
</tr>
<tr>
<td>32</td>
<td>26</td>
<td>32</td>
<td>46</td>
<td>30</td>
<td>46</td>
<td>42</td>
<td>18</td>
<td>18.5</td>
</tr>
<tr>
<td>35</td>
<td>29</td>
<td>36</td>
<td>52</td>
<td>35</td>
<td>52</td>
<td>48</td>
<td>20</td>
<td>20.5</td>
</tr>
<tr>
<td>40</td>
<td>34</td>
<td>41</td>
<td>62</td>
<td>40</td>
<td>62</td>
<td>58</td>
<td>22</td>
<td>22.5</td>
</tr>
<tr>
<td>45</td>
<td>38</td>
<td>46</td>
<td>70</td>
<td>44</td>
<td>70</td>
<td>65</td>
<td>24</td>
<td>24.5</td>
</tr>
<tr>
<td>50</td>
<td>43</td>
<td>52</td>
<td>80</td>
<td>50</td>
<td>80</td>
<td>72</td>
<td>26</td>
<td>26.5</td>
</tr>
<tr>
<td>55</td>
<td>47</td>
<td>56</td>
<td>90</td>
<td>56</td>
<td>90</td>
<td>80</td>
<td>28</td>
<td>28.5</td>
</tr>
<tr>
<td>60</td>
<td>52</td>
<td>63</td>
<td>100</td>
<td>62</td>
<td>100</td>
<td>90</td>
<td>30</td>
<td>30.5</td>
</tr>
<tr>
<td>65</td>
<td>57</td>
<td>68</td>
<td>110</td>
<td>68</td>
<td>110</td>
<td>100</td>
<td>32</td>
<td>32.5</td>
</tr>
<tr>
<td>70</td>
<td>62</td>
<td>73</td>
<td>120</td>
<td>73</td>
<td>120</td>
<td>110</td>
<td>34</td>
<td>34.5</td>
</tr>
<tr>
<td>75</td>
<td>67</td>
<td>80</td>
<td>130</td>
<td>80</td>
<td>130</td>
<td>120</td>
<td>36</td>
<td>36.5</td>
</tr>
<tr>
<td>80</td>
<td>73</td>
<td>90</td>
<td>140</td>
<td>90</td>
<td>140</td>
<td>130</td>
<td>38</td>
<td>38.5</td>
</tr>
<tr>
<td>85</td>
<td>79</td>
<td>100</td>
<td>150</td>
<td>100</td>
<td>150</td>
<td>140</td>
<td>40</td>
<td>40.5</td>
</tr>
</tbody>
</table>

注1: 呼び径は、（）以外を優先し、必要に応じて（）のものを使用。
注2: 呼び径は、（）以外を優先し、必要に応じて（）のものを使用。
注3: 呼び径は、（）以外を優先し、必要に応じて（）のものを使用。
技術データ 沈みキー及びキー溝 JIS B 1301 (1996) より抜粋

1. 平行キー及びキー溝

![平行キー及びキー溝の図](image1.png)

<table>
<thead>
<tr>
<th>キーの呼合寸法 b×h</th>
<th>キーの寸法</th>
<th>キー溝の寸法</th>
<th>基準寸法</th>
<th>評価計</th>
<th>評価計 (mm)</th>
<th>評価計 (mm)</th>
<th>評価計 (mm)</th>
<th>評価計 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b×h</td>
<td>b × h (mm)</td>
<td>b × h (mm)</td>
<td>b × h (mm)</td>
<td>b × h (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>基準寸法</th>
<th>評価計</th>
<th>評価計 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b × h (mm)</td>
<td>b × h (mm)</td>
<td></td>
</tr>
</tbody>
</table>

2. こう配キー・頭付きこう配キー及びキー溝

![こう配キー及びキー溝の図](image2.png)

<table>
<thead>
<tr>
<th>キーの呼合寸法 b×h</th>
<th>キーの寸法</th>
<th>キー溝の寸法</th>
<th>基準寸法</th>
<th>評価計</th>
<th>評価計 (mm)</th>
<th>評価計 (mm)</th>
<th>評価計 (mm)</th>
<th>評価計 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b×h</td>
<td>b × h (mm)</td>
<td>b × h (mm)</td>
<td>b × h (mm)</td>
<td>b × h (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>基準寸法</th>
<th>評価計</th>
<th>評価計 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b × h (mm)</td>
<td>b × h (mm)</td>
<td></td>
</tr>
</tbody>
</table>

単位：mm

注意

適応する際は、キーの強さに応じたトルクから求められるものである。一般用途の設計として示すキーの大きさが適当なトルクに対して適当な場合には、適応する軸径が大きい軸を用いない。その場合には、キーの側面が、最適のピークに当たるようにb及びcを修正するが、適応する側面が小さい軸を用いないほうが良い。

参考

試作を付けた呼び寸法のものを作成すること、新設計に使用しない。

【注（1）】なお、表の範囲内で、次のよう改変される。

<table>
<thead>
<tr>
<th>呼合寸法</th>
<th>基準寸法</th>
<th>評価計</th>
<th>評価計 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>b×h</td>
<td>b × h (mm)</td>
<td>b × h (mm)</td>
<td>b × h (mm)</td>
</tr>
</tbody>
</table>
1．一般鉄鋼材料

<table>
<thead>
<tr>
<th>分類</th>
<th>材料記号</th>
<th>適用</th>
<th>JIS</th>
<th>用途</th>
<th>平面</th>
<th>角部</th>
<th>六角部</th>
<th>丸棒</th>
<th>縦形</th>
<th>厚鋼</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般構造用 不耐食鋼材</td>
<td>SS400</td>
<td>一般鉄鋼品</td>
<td>加工性・浸透性が良好</td>
<td>JIS G 3101</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>と金鋼 (冷間用)</td>
<td>SS400</td>
<td>一般鉄鋼品</td>
<td>硬度・衝撃値が良好、おそれば切断性が Serifono</td>
<td>JIS G 3101</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
</tbody>
</table>

2．ステンレス鋼材料

<table>
<thead>
<tr>
<th>分類</th>
<th>材料記号</th>
<th>耐用</th>
<th>JIS</th>
<th>用途</th>
<th>平面</th>
<th>角部</th>
<th>六角部</th>
<th>丸棒</th>
<th>縦形</th>
<th>厚鋼</th>
</tr>
</thead>
</table>

3．アルミニウム合金材料

| 分類 | 材料記号 | 定用途 | 用途 | JIS | 用途 | 平面 | 角部 | 六角部 | 丸棒 | 縦形 | 厚鋼 |

アルミニウム及びアルミニウム合金の加工性

<table>
<thead>
<tr>
<th>記号</th>
<th>電鍍</th>
<th>材質</th>
<th>用途</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>連 鍍</td>
<td>鋼</td>
<td>連 鍍</td>
</tr>
<tr>
<td>FL</td>
<td>合金用</td>
<td>合金用</td>
<td>合金用</td>
</tr>
<tr>
<td>BD</td>
<td>回 蛋</td>
<td>回 蛋</td>
<td>回 蛋</td>
</tr>
<tr>
<td>W</td>
<td>冷 鍍</td>
<td>冷 鍍</td>
<td>冷 鍍</td>
</tr>
<tr>
<td>T</td>
<td>冷 鍍</td>
<td>冷 鍍</td>
<td>冷 鍍</td>
</tr>
</tbody>
</table>

鋼鉄板の製品名を示すJIS記号

<table>
<thead>
<tr>
<th>材質</th>
<th>記号</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW</td>
<td>連 鍍</td>
</tr>
<tr>
<td>TB</td>
<td>回 蛋</td>
</tr>
<tr>
<td>TH</td>
<td>回 蛋</td>
</tr>
<tr>
<td>TD</td>
<td>回 蛋</td>
</tr>
<tr>
<td>TD</td>
<td>回 蛋</td>
</tr>
</tbody>
</table>

記述例

- 168hrが示した温度と時間の条件で実施する。
4. 鋳合金材料

<table>
<thead>
<tr>
<th>材料</th>
<th>材料記号</th>
<th>用途</th>
<th>適用</th>
<th>JIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>黄銅板</td>
<td>C3601F</td>
<td>一般用加工用</td>
<td>単板、板状</td>
<td>JIS H 1310</td>
</tr>
<tr>
<td>鋼板</td>
<td>C3104F</td>
<td>一般用加工用</td>
<td>単板、板状</td>
<td>JIS H 1310</td>
</tr>
</tbody>
</table>

5. 鋼製品及び鋳合金製品

<table>
<thead>
<tr>
<th>材料</th>
<th>材料記号</th>
<th>用途</th>
<th>適用</th>
<th>JIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ねじ用鋼製品</td>
<td>FC200</td>
<td>一般機械部品</td>
<td>使用温度 35℃</td>
<td>JIS G 5601</td>
</tr>
<tr>
<td>ねじ用鋼製品</td>
<td>FC201</td>
<td>一般機械部品</td>
<td>使用温度 35℃</td>
<td>JIS G 5601</td>
</tr>
</tbody>
</table>

6. 鋼管材料

<table>
<thead>
<tr>
<th>材料</th>
<th>材料記号</th>
<th>用途</th>
<th>適用</th>
<th>JIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>配管用炭素鋼管</td>
<td>STPG570 (STPG57A)</td>
<td>配管部品</td>
<td>使用温度 35℃</td>
<td>JIS G 5645</td>
</tr>
</tbody>
</table>

7. 波用材料

<table>
<thead>
<tr>
<th>材料</th>
<th>材料記号</th>
<th>用途</th>
<th>適用</th>
<th>JIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ビニール袋</td>
<td>SWP-A</td>
<td>高強度で耐熱性に優れた冷蔵用紙</td>
<td>高強度</td>
<td>JIS G 3522</td>
</tr>
<tr>
<td>ビニール袋</td>
<td>SWP-B</td>
<td>高強度で耐熱性に優れた冷蔵用紙</td>
<td>高強度</td>
<td>JIS G 3522</td>
</tr>
</tbody>
</table>

表面処理の種類

<table>
<thead>
<tr>
<th>名称</th>
<th>用途</th>
<th>处理できる</th>
<th>材質</th>
<th>使用例</th>
<th>目的・特長</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>酸洗メキシ</td>
<td>--</td>
<td>鋼</td>
<td>-3~20</td>
<td>--</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>酸洗ニッケルメキシ</td>
<td>--</td>
<td>鋼</td>
<td>-1~2</td>
<td>--</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>酸洗ニッケルメキシ</td>
<td>--</td>
<td>鋼</td>
<td>-1~2</td>
<td>--</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>三価ニッケルメキシ</td>
<td>--</td>
<td>鋼</td>
<td>-1~2</td>
<td>--</td>
<td>-</td>
<td>--</td>
</tr>
<tr>
<td>三価ニッケルメキシ</td>
<td>--</td>
<td>鋼</td>
<td>-1~2</td>
<td>--</td>
<td>-</td>
<td>--</td>
</tr>
</tbody>
</table>

表面処理の外観色

- 三価ニッケルメキシ
- 塩酸ニッケルメキシ
- 硬質クラロニメキシ

![表面処理の外観色](image-url)
焼入れと硬さの試験法の種類

<table>
<thead>
<tr>
<th>鋼種の材料の熱処理</th>
<th>原理</th>
<th>適用熱処理部品</th>
<th>特色</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>スラブ焼入れ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>灰白鋼 (HV)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>深溶け</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高温焼入れ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>屈熱</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>室温焼入れ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>薄板専用鋼材</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ベッド仕上げ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 硬さ試験法の種類とその部品
<table>
<thead>
<tr>
<th>試験法</th>
<th>原理</th>
<th>適用熱処理部品</th>
<th>特色</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>ブルーム硬度</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ローレン硬度</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>シャープ硬度</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ビッカス硬度</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

一般鋼材

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS400</td>
<td>平鋼</td>
<td></td>
<td></td>
</tr>
<tr>
<td>角鋼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>バラ鋼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ブリガス鋼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>丸鋼</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

冷間延性鋼板

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPCC</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPhC</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

熱間延性鋼板

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGC-Ο</td>
<td>ミカゲ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGCC</td>
<td>平鋼</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ツイスト鋼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>焼入れ延性鋼板</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS3</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS4</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS5</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

冷間圧延鋼材

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCRM45S</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ステンレススチール板</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クロムモリブデン鋼材</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

一般鋼材

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>S50C</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS93</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCM435</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUJ2</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 備考 | | | |
|------|-------------|-----------------|
| 丸鋼 | | | |
| 角鋼 | | | |
| バラ鋼 | | | |
| ブリガス鋼 | | | |
| 丸鋼 | | | |

冷間延性鋼板

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPCC</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPhC</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

熱間延性鋼板

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGC-Ο</td>
<td>ミカゲ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGCC</td>
<td>平鋼</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ツイスト鋼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>焼入れ延性鋼板</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS3</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS4</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS5</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

冷間圧延鋼材

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCRM45S</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ステンレススチール板</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クロムモリブデン鋼材</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

一般鋼材

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>S50C</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS93</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCM435</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUJ2</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 備考 | | | |
|------|-------------|-----------------|
| 丸鋼 | | | |
| 角鋼 | | | |
| バラ鋼 | | | |
| ブリガス鋼 | | | |
| 丸鋼 | | | |

冷間延性鋼板

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPCC</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPhC</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

熱間延性鋼板

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAGC-Ο</td>
<td>ミカゲ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGCC</td>
<td>平鋼</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ツイスト鋼</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>焼入れ延性鋼板</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS3</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS4</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS5</td>
<td>鋼板</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

冷間圧延鋼材

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCRM45S</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ステンレススチール板</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>クロムモリブデン鋼材</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

一般鋼材

<table>
<thead>
<tr>
<th>鋼種</th>
<th>材料記号</th>
<th>形状/単位</th>
<th>標準品</th>
</tr>
</thead>
<tbody>
<tr>
<td>S50C</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SKS93</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCM435</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUJ2</td>
<td>鋼材</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 備考 | | | |
|------|-------------|-----------------|
| 丸鋼 | | | |
| 角鋼 | | | |
| バラ鋼 | | | |
| ブリガス鋼 | | | |
| 丸鋼 | | | |
標準材料寸法表 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>標準寸法</th>
</tr>
</thead>
<tbody>
<tr>
<td>オーステナイト系</td>
<td>SUS303</td>
<td>六角 D</td>
<td>3.4,5,6,7,8,10,11,12,13,15,16,17,19,20,22,25,26,30,35,40,45,50,55,60,70</td>
</tr>
<tr>
<td></td>
<td>SUS304</td>
<td>六角 D</td>
<td>8.0,10,14,17,19,21,23,25,26,30,32,35,38,41,46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>六角 D</td>
<td>1,2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>六角 D</td>
<td>12,14,16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>六角 D</td>
<td>16,18,20,22,25,26,28,30,32,36,40,45,50,60</td>
</tr>
</tbody>
</table>

膠合金材料

<table>
<thead>
<tr>
<th>鋼種</th>
<th>ハンガリー</th>
<th></th>
<th>標準寸法</th>
</tr>
</thead>
<tbody>
<tr>
<td>黃銅板</td>
<td>C2801P</td>
<td></td>
<td>0.15,0.20,0.30,0.40,0.50,0.60,0.80,1.2,1.5,2.0,2.5,3.2,4.0,5.0,6.35,8.0</td>
</tr>
<tr>
<td>銅板</td>
<td></td>
<td></td>
<td>8.0,10.0,12.5,15.0,20.0,25.0,30.0</td>
</tr>
</tbody>
</table>

アルミニウム合金材料

<table>
<thead>
<tr>
<th>鋼種</th>
<th>ハンガリー</th>
<th></th>
<th>標準寸法</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニューグロス</td>
<td>A2017</td>
<td></td>
<td>0.0,0.15,0.20,0.30,0.40,0.50,0.60,0.90,1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12,15,16,20,25,30,35,40,45,50,55,60,70,80,90,100</td>
</tr>
</tbody>
</table>

鋼系合金材料

<table>
<thead>
<tr>
<th>材料</th>
<th>台湾</th>
<th></th>
<th>標準寸法</th>
</tr>
</thead>
<tbody>
<tr>
<td>ニューグロス</td>
<td>A052</td>
<td></td>
<td>0.0,0.05,0.06,0.07,0.1,1.2,1.5,2.0,2.5,3.2,3.5,3.7,4.0,4.5,5.0,6.0,7.0,8.0,10.0,15.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15,16,18,20,25,30,35,40,45,50,55,60,70,80,90,100</td>
</tr>
</tbody>
</table>

鋼系材料

<table>
<thead>
<tr>
<th>鋼種</th>
<th>ハンガリー</th>
<th></th>
<th>標準寸法</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポリエチレン樹脂</td>
<td>ペーパーライド</td>
<td></td>
<td>0.5,0.0</td>
</tr>
<tr>
<td></td>
<td>ポリエチレン樹脂</td>
<td></td>
<td>0.8,10.9,15,20,25,30,35,40,45,50,55,60,70,80,90,100</td>
</tr>
<tr>
<td></td>
<td>ポリメチルメチレン樹脂</td>
<td></td>
<td>15,16,17,18,19,20,22,25,30,35,40,45,50,55,60,70,80,85</td>
</tr>
<tr>
<td></td>
<td>アセタール樹脂</td>
<td></td>
<td>4.5,6,7,8,10,12,15,16,17,19,20,22,25,30,35,40,45,50,55,60,70,75,80,85</td>
</tr>
<tr>
<td></td>
<td>一般用メラミン樹脂</td>
<td></td>
<td>0.8,1.1,1.3,2.4,5.6,8,10,15,20,25,30</td>
</tr>
</tbody>
</table>
材料に関するJISと関連外国規格との比較表 2

工具鋼関係

鋼材種類	JIS	ASTM	BS	DIN	BS	MF	OCT			
----------	-----	------	----	-----	----	----	-----			
ステンレス鋼										
耐熱鋼										
耐摩耗鋼										
特殊用途鋼										

鋼材ブランド対照表

鋼材種類	JIS	ASTM	BS	DIN	BS	MF	OCT			
----------	-----	------	----	-----	----	----	-----			
ステンレス鋼										
耐熱鋼										
耐摩耗鋼										
特殊用途鋼										

鋼材の硬度と対応工具表

鋼材種類	JIS	ASTM	BS	DIN	BS	MF	OCT			
----------	-----	------	----	-----	----	----	-----			
ステンレス鋼										
耐熱鋼										
耐摩耗鋼										
特殊用途鋼										